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Time–frequency energy fluctuations of turbulent experimental velocity signals for
Reλ ' 10 and 800, are analysed using orthogonal wavelet transform. Some statistical
properties of the energy bursts are analysed and discussed. The probability distribution
functions (PDFs) of the energy amplitude fluctuations are investigated at different
scales. Such PDFs show that the so-called non-intermittent and intermittent regions
are characterized by quite different behaviour. Analysis of the wavelet coefficient
scaling relations, averaged under suitable conditioning, reveals that the most energetic
events localized in time and scale are responsible for the structure function (or wavelet
coefficients) scaling anomalies related to intermittency. It is shown that the statistical
properties which are correlated with the mechanism of the energy cascade from large
to small scales are characterized by a universal behaviour. On the other hand, when
the chosen statistical indicators are related to the characteristic size of turbulent
structures, no universality is achieved, and a strong dependence upon the turbulent
generator and Reλ is observed. This is demonstrated by analysis of the statistics of
time delays between successive events which show non-universal PDFs. The mean
delay between successive intermittent events is also Reλ dependent and increases for
increasing Reλ.

1. Introduction
The study of homogeneous and isotropic turbulence has usually been based upon

two approaches which, sometimes, have yielded contrasting results. One is based on a
statistical viewpoint that may be suitable for turbulence modelling, the other is based
on direct analysis and superposition of basic vortical structures and is motivated by
the importance that coherent structures have for drag reduction and flow control
problems.

The statistical approach deals with the analysis of the velocity associated with
a certain scale r or, equivalently, with the study of the p-order velocity structure
functions, hereafter indicated by Sp, and defined as

Sp(r) = 〈|Vr|p〉.
The symbol 〈.〉 denotes ensemble averaging over different realizations of the velocity
difference Vr = V (x + r) − V (x) whereas the absolute value is usually adopted to
improve the statistical accuracy (see e.g. Camussi et al. 1996a). The main challenge
of this statistical approach, based on the 1941 Kolmogorov theory (Kolmogorov
1941) and successively developed in many so-called phenomenological models (see e.g.
the overview by Meneveau & Sreenivasan 1991), is the determination of universal
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properties (always in a statistical sense) which account for the intermittent nature of
the turbulent energy dissipation ε, and which are not dependent on the turbulence
generator (see also Frisch 1996, for a general review).

Neither this approach nor the other based on the superposition of elementary
structures (see e.g. Pullin & Saffman 1992; Lundgren 1982, 1993; Moffat 1984) is
completely satisfactory mainly because of the lack of a direct and clear connection
with the Navier–Stokes dynamics.

The most recent theoretical studies of homogeneous and isotropic turbulence at-
tempt to correlate the universal properties observed in the velocity difference statistics
with the presence and suitable combination of turbulent structures characterized by
strong spatio-temporal coherence (see the statistical model proposed recently by She
& Levesque 1994 and She & Waymire 1995). The meeting point between the two
approaches may be found in the intermittent nature of the turbulent energy dissipa-
tion. It has in fact been demonstrated that intermittency, which in the present context
refers to the non-Gaussian spatio-temporal distribution of the velocity gradients or
of the rate of turbulent energy dissipation, is related to the presence of vortical struc-
tures with small characteristic size or of high vorticity, originated from the large-scale
structures by the well-known stretching and folding process (Tennekes & Lumley
1972). The shape of such structures has been checked in numerical analysis of homo-
geneous and isotropic turbulence at moderate Reynolds numbers, to be filament-like
(e.g. She, Jackson & Orszag 1990; Vincent & Meneguzzi 1991; Jimenez et al. 1993;
Verzicco, Jimenez & Orlandi 1996) with a transverse size of the order of a few dissi-
pative lengths η = ν3/4ε−1/4 where ν denotes the kinematic viscosity. These numerical
results are also supported by some experimental studies (e.g. Kuo & Corrsin 1972;
Douady, Couder & Brachet 1991; Villermaux, Sixon & Gagne 1995). Nevertheless,
it appears that an appropriate and complete analysis of the statistical properties of
such structures, as far as we know, has not yet been accurately performed.

An optimal tool for the analysis of spatio-temporal intermittent phenomena is
the wavelet decomposition that, unlike the usual Fourier representation, permits the
isolation of localized events both in time and frequency (or space and scale if, as in
the present case, the Taylor hypothesis is adopted to exchange time and space). A
complete review of the properties and advantages of the wavelet representation can
be found in, among others, Farge (1992), Meneveau (1991) and Daubechies (1988). In
a previous work, the present authors (Camussi & Guj 1997) have shown by means of
a suitable wavelet-based identification technique that the properly normalized energy
bursts at a selected scale r are directly correlated to the passage of coherent structures.
Furthermore, they found that in different turbulence generators (namely, grids or jets)
structures of different shapes are observed in spite of the universal statistics of the
velocity structure functions. These results are the basis and the principal motivations
of the present study.

In this paper, we present an analysis of the statistical properties of the energy
bursts detected at different scales that, as already pointed out, are assumed to be
induced by the passage of the coherent structures which animate the turbulent flow.
Due to the connection between coherent structures and energy peaks at localized
scales, the statistical properties of the energy fluctuations give direct information on
the statistics of coherent structures, their temporal dynamics and their time-scale
evolution. In our opinion these are fundamental aspects for understanding the role
of coherent structures in real turbulence and their connection with the statistical
laws of the velocity structure functions Sp(r). Furthermore, in the present work we
observe that some statistical properties of the energy fluctuations may show universal
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behaviour in the sense that they seem not to be dependent on the turbulence generator
or on Reλ, which is the turbulent Reynolds number based on the Taylor microscale
λ and the velocity r.m.s. On the other hand, when the statistical indicators are more
directly correlated to the characteristic size and shape of coherent structures, different
results are obtained for different flow configurations.

These observations are achieved by considering two experimental test cases which
are characterized by quite different Reλ and different turbulence generators. Specifi-
cally, we consider grid turbulence in isotropic and homogeneous conditions at very
low Reλ (∼ 10) and locally homogeneous jet turbulence at high Reλ (∼ 800). The
two test flow conditions both correspond to locally homogeneous and unbounded
turbulent flows and only the longitudinal velocity component is measured in both
cases. The measurement of only one velocity component of course represents a
limitation of the present analysis. Nevertheless, the use of multiprobes or a numerical
simulation would place limitations on the spatial resolution and on the maximum
obtainable Reλ. Furthermore, as demonstrated in Camussi & Guj (1997), the different
turbulent generators considered here lead to quite different time signatures of the most
energetic coherent structures correlated to the local energy fluctuations. Moreover,
in that paper the authors have shown that the strongest differences were observed
only on the longitudinal velocity component (the one parallel to the mean advection
velocity). Therefore, the analysis of only the longitudinal velocity at the two Reynolds
number considered is a meaningful quantity for the present purposes. The main aspect
that we would like to clarify in this paper is the relation between the different type
of structures originated by the different turbulence generators and the universality of
the intermittency anomalies usually observed in locally homogeneous flows (most of
the experimental analyses on this topic available in the literature are indeed based
on grid or jet turbulence, see e.g. Arneodo et al. 1996). Indeed, part of this paper is
devoted to showing that such different structures are responsible for the intermittency
anomalies which are confirmed to be universal. On the other hand it is also shown
that other statistical indicators, which are more directly correlated to the size and
shape of the structures, are not universal. We consider that the characterization of the
statistical properties of the energy bursts may contribute to the comprehension of the
connection between the dynamics of vortical coherent structures and the statistical
properties of homogeneous isotropic turbulence. This challenge may also be achieved
by defining the limits of the observed statistical universality which, sometimes, hides
the actual nature of turbulence.

The paper is organized as follows: in § 2 we present the methodology we have
followed to determine the local energy fluctuations. The statistical indicators that we
have chosen for the characterization of such energy fluctuations are presented in § 3.
In § 4 experimental flow conditions are summarized and results are discussed in § 5.
In § 6 final remarks and conclusions are presented.

2. Local energy fluctuations
The experimental velocity signals obtained through single-probe hot-wire measure-

ments are processed by means of the orthogonal wavelet decomposition. Orthonormal
wavelets of Battle–Lemarie type are used to decompose the velocity signals into a
time–frequency (or space-scale) distribution of wavelet coefficients. None of the results
achieved in the present work depend upon the wavelet type. Indeed, in the present
analysis, wavelet decomposition is applied for the individuation of localized energy
bursts and it has been checked that different types of wavelet kernel lead to energy
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distributions whose largest peaks are localized at the same instants (see also Ca-
mussi & Guj 1997). We point out also that orthonormality ensures the invertibility
condition and a limited (since non-redundant) number of coefficients to be analysed
in the post-processing procedure. Details of the procedure adopted for the wavelet
expansion can be found in Meneveau (1991) and Camussi & Guj (1997). Hereafter,
w(r, x) denotes the discrete wavelet coefficients obtained by the projection of the
measured longitudinal velocity component, and corresponding to the scale r and at a
time x, where neither r nor x are continuous functions. Specifically, the discretization
of x follows from the frequency sampling adopted in the signal acquisition whereas
the number of scales r is dependent on the length of the signal window over which
the wavelet transformation is performed. In the present case, when segmentation of
the signal was needed, we considered windows of 4096 samples, corresponding, in
terms of space, to length scales much larger than the integral length, and leading to
12 scales (or resolution levels). The larger resolution always corresponds to a few
Kolmogorov lengths η (∼ 5η).

As pointed out by Camussi & Guj (1997), the presence of turbulent structures, their
singular shape and their temporal intermittent distribution lead to a non-uniform
distribution of energy at the different scales r. The energy contained at a scale r
and instant x can be simply evaluated as the square of the corresponding wavelet
coefficient (see Meneveau 1991). However, a more suitable method of representing
energy and intermittency in non-dimensional form at each selected resolution, can
be achieved by the use of the so-called local intermittency measure (LIM, see Farge
1992) that is defined as

l(r, x) =
w(r, x)2

〈w(r, x)2〉x . (2.1)

The averaging procedure, represented by the symbol 〈.〉x, is performed by summing
the normalized squares of the wavelet coefficients calculated at fixed scale r over the
locations x and dividing by the number of instants (x). The two-dimensional function
l(r, x) represents the energy of the signal at a scale r and instant (or space location) x
normalized by the total amount of energy contained in the signal at the scale r. For
fixed r = r̄, the spatial (or temporal) distribution of l(r̄, x) shows clear intermittent
behaviour (examples are reported in Meneveau 1991; Farge 1992; Camussi & Guj
1997). This is more evident at larger resolutions, i.e. at smaller scales. The idea
underlying the present analysis is that the peaks in the l(r, x) distribution are induced
by coherent structures which are passing close to the measuring probe location. The
intermittent nature of l(r, x) indicates the possibility that structures of different energy
are characterized by a random phase whereas the different magnitudes of the l(r, x)
peaks suggests that the energy associated with the structures is also a random variable.
In order to select structures of different energy, we can consider a scale r̄ and choose
a suitable threshold level t to be associated with the l(r, x) distribution. In this way,
we separate the wavelet coefficients into two sets: those corresponding to l(r̄, x) > t
and, obviously, others for which l(r̄, x) < t. An example of the l(r̄, x) distribution,
is reported in figure 1. This case refers to a scale r̄ of the order of few Kolmogorov
lengths η and at Reλ ' 800. In the framework of the present interpretation of the
l(r, x) distribution, the largest peaks of figure 1 are presumed to be induced by the
passage of coherent structures. In the example of figure 1, we have fixed a threshold
t = 60. If we consider l(r̄, x) > t, we capture four events corresponding to the
largest peaks. On the other hand, for decreasing t, a much larger number of events
is detected. This event selection is the basis of the identification technique previously
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Figure 1. Example of a l(r, x) distribution for r ' 5η at Reλ ' 800. A reference trigger level is
shown at t1 = 60 (dashed line) which leads to the selection of four events with l(r, x) > 60.

proposed by the authors (Camussi & Guj 1997). The selection of high or low energetic
wavelet coefficients may be interpreted as a separation between coherent structures of
high energy, and background turbulence which may also contain coherent structures
with an energy distribution intermittent in phase, but with a lower degree of energy
magnitude. As will be shown later, the independence of the presented results from
the level of the threshold t indicates that physically there is no separation between
coherent structures and background Gaussian turbulence. Therefore, we believe that,
in view of the independence of the present analysis of the trigger threshold, the results
obtained are not a consequence of an artificial separation between large and small
energy fluctuations.

3. Energy burst amplitude and phase statistics
Several statistical indicators may be chosen for a general characterization of the

turbulent energy fluctuations. The present work does not pretend to be exhaustive in
this regard. Therefore, we try to consider some examples which are presumed to be
representative of the energy fluctuation statistics and, thus, of the dynamical behaviour
of coherent structures. More specifically, we are going to consider two principal classes
of indicators which, as pointed out later, may lead to different interpretations. The
first one refers to those quantities which are representative of the temporal dynamics
of coherent structures and of the evolution of energy at different scales. We shall
show that these parameters have almost universal properties. Indicators belonging to
the second class are instead more directly dependent on the characteristic size and
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shape of the turbulent structures. In this case no universality is achieved and a strong
dependence upon the Reλ and/or flow conditions is observed.

The principal indicators we have considered for a suitable statistical characterization
of the turbulent energy fluctuations, are summarized in the following:

(a) Probability distribution functions (PDF) of l(r, x): for each scale r we determine
the PDF of l(r, x) and compare such distributions for different scales and different
flow conditions. In this case, the use of a threshold on l(r, x) is adopted only to
achieve better reliability of the PDF but, physically, the event selection is irrelevant.
It is shown that there is a connection between the PDF of l(r, x) and the shape of
the energy spectra. The results obtained and some possible interpretations are given
in § 5.

(b) Scaling laws of the wavelet coefficients: as verified in several works (Bacry et
al. 1989; Farge 1992; Mimouni et al. 1995; Camussi & Guj 1997), when dealing with
singular functions at a scale r, the wavelet coefficients and the velocity difference Vr
scale in the same way. From the definition of l(r, x) the following relation applies:

if Vr ∝ rα ⇒ l(r, x)1/2 ∝ |Vr|, (3.1)

where α is a positive constant indicating that Vr is a continuous Holder function of
order α. We can therefore introduce a new non-dimensional variable defined in the
following way:

V ∗r = l(r, x)1/2, (3.2)

that, in view of (3.1), is representative of the velocity difference Vr . This quantity will
be used later when dealing with the energy PDFs introduced in (a).

The scaling laws relative to the wavelet coefficients may be formalized as follows:

〈w(r, x)p〉x = rζ(p) or 〈|w(r, x)|p〉x = 〈|w(r, x)|q〉ζ(p)/ζ(q)
x . (3.3)

The averages of this equation are performed by considering different realizations
which correspond to the time instants x extending over the segments of 4096 samples,
into which the whole signal has been divided. The right-hand side of (3.3) represents
the application of the so-called extended self similarity (ESS) form of scaling (see
e.g. Benzi et al. 1993; Benzi, Ciliberto & Chavarria 1995; Arneodo et al. 1996).
This is a necessary tool for the determination of scaling exponents in moderate and
low Reynolds number flows (see also Camussi et al. 1996b). The scaling exponents
ζ(p) retain the non-Gaussian distribution of the turbulent energy dissipation since
ζ(p) 6= p/3 for p 6= 3 in contrast with the Kolmogorov prediction ζ(p) = p/3 (see e.g.
Frisch 1996). This is one of the better established results in the statistical analysis
of homogeneous and isotropic turbulence and is supported by many experimental
studies (see, among many, Anselmet et al. 1984). When, in (3.3), we consider q = 3,
the left-hand side and right-hand side are equivalent since (Monin & Yaglom 1975):

〈w(r, x)3〉x ∝ r → ζ(3) = 1. (3.4)

In (Camussi & Guj 1997) we have shown that when only wavelet coefficients corre-
sponding to l(x, r) > t are retained, the ζ(p) obtained are, within the experimental
uncertainty, the same as those resulting from the whole signal and are almost inde-
pendent of Reλ (for about Reλ > 10) and the turbulence generator used. This result is
extended and further checked in the present work by analysing two aspects. The first
deals with the scaling properties of the properly smoothed wavelet coefficients. This
analysis is performed by filtering out the wavelet coefficients corresponding to events
l(x, r) > t. This means that, for different t, the coefficients selected are substituted
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by linear interpolation between the previous (in terms of x and at the same r) and
the subsequent coefficient (see also Abry et al. 1994). More specifically, when an
event corresponding to l(x, r) > t is detected at a scale r = r̄ and for x = x0, the
interpolation procedure is performed for all scales at the same x = x0. In this way
the energetic contribution of the selected event is filtered out in the whole range of
available resolutions. The application of ESS is therefore formalized as follows:

〈|w̃(r, x)|p〉x = 〈|w̃(r, x)|q〉ζ(p)/ζ(q)
x , (3.5)

where w̃(r, x) represents the set of wavelet coefficients properly smoothed each time
the corresponding l(x, r) overcame the threshold. Therefore, even if the averages are
still performed upon all x as in (3.3), the wavelet decomposition is necessary in order
that proper smoothing at selected instants be performed.

The second aspect is the analysis of the scaling properties of the wavelet coefficients
corresponding to l(x, r) < t for different t. In this second approach, we consider the
following scaling relation:

〈|w(r, x0)|p〉xt0 ∼ 〈|w(r, x0)|3〉ζ(p)xt0
. (3.6)

This conditional average is therefore performed only over the wavelet coefficients at
the instants xt0 that correspond to l(r, x0) 6 t. It is expected that the lower t the
lower should be the intermittency anomaly and the Kolmogorov p/3 scaling should
be achieved asymptotically for decreasing t. Also in this case, the proper selection of
the instants xt0 may be performed only by taking advantage of the locality in time
of the wavelet coefficients, and could have not been achieved by a simple Fourier
transform.

The question that we would like to clarify with the analysis of such scaling relations,
is whether the energy fluctuations are representative of the intermittent behaviour
usually observed in the velocity structure functions. Furthermore we would like to
analyse how the filtering or thresholding procedures affect the scaling exponents and
whether they are dependent upon Reλ or the turbulence generator. This corresponds
to analysing what is the influence of the coherent structures on the structure func-
tion scaling laws and whether their effects are dependent on the way turbulence is
generated. For further discussion and presentation of results, we again refer to § 5.

(c) Waiting times: following the procedure applied to pressure fluctuations by Abry
et al. (1994), we analyse the PDF of the time delays between successive events in
the anemometric signal. In this case, the only selected time instants x0 are those
corresponding to l(r, x0) > t. This analysis is limited to scales r corresponding to a
few Kolmogorov lengths in order to get sufficient reliability of the PDFs since, in view
of the orthonormal wavelet expansion, the smaller the scale the larger the number of
events detected. It is shown that such PDFs are strongly non-Gaussian. Furthermore,
it is shown that the functional form of such distributions depends upon the flow
conditions and that their shape may give an indication of the characteristic size of
the most probable coherent structures. The different behaviour found in different flow
conditions will be interpreted (in § 5) in terms of the effects of the different turbulent
structures which characterize grid and jet turbulence and which affect the waiting
time PDFs. The observed differences are then to be associated, as will be pointed out
later, with a correlation length typical of the coherent structures which characterise
the turbulent flow considered.

Finally, we also calculated the mean waiting time between successive events, that,
properly normalized, again shows a strong dependence on Reλ.
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Case V̄ (m s−1) σV (m s−1) η (mm) λ (mm) Reλ Ntot × 106 Fs × 103 (s−1)

Grid 2.5 0.0290 ∼ 0.80 ∼6.3 ∼ 10 3 16
Jet 8.4 2.0310 ∼ 0.10 ∼7.0 ∼ 800 16 16

Table 1. Flow conditions and acquisition parameters of the two test cases considered: grid represents
homogeneous grid turbulence at x/M = 163 (with M the mesh size); jet represents the experiment
in fully developed jet turbulence at x/D = 23 (with D the jet diameter). V̄ is the mean axial velocity
at the measurement positions and σV is the standard deviation of the longitudinal velocity. Ntot is
the total amount of acquired samples with frequency sampling Fs.

In conclusion, we point out that the indicators (a) and (b), in addition to other
consequences which will be discussed later, are examples of statistical properties which
show universality. On the other hand, the indicator (c) is representative of those which
are affected by the different nature of coherent structures which seem to depend on
the way turbulence is generated and on the Reλ of the flow.

As pointed out above, all the adopted indicators are based on the locality in time
(or space) of the wavelet coefficients and the consequent results that will be presented
in § 5 could have not been obtained by projecting the signals over the Fourier modes.

4. Experimental data and measurement reliability
Experimental data are obtained from single-probe hot-wire measurements per-

formed in grid and jet turbulence. Two very different test cases are considered, and
the corresponding Reλ differ by about two orders of magnitude (from ∼ 10 to ∼ 800,
a value not attainable by numerical simulation). Flow conditions are summarized in
table 1 for the grid and jet test cases. For details of the experimental arrangements
and measurement techniques, see Camussi et al. (1996a), and Camussi & Guj (1996).

As already pointed out, the use of a single sensor probe has been dictated by
requirements of spatial resolution and low intrusivity. This of course represents a
limitation to the interpretation of the physics of the phenomenon and introduces an
error (of the order of 4 % for a relative turbulence level of about 20 %) due to the
second-order terms neglected in the Taylor expansion (Jorgensen 1971).

We should also point out that measurements at both very low and very high Reλ
may present further difficulties in ensuring good accuracy of the acquired data.

In the grid case, the main source of errors is correlated to the very low turbulence
level of the flow and, therefore, to the possibility that the background noise (e.g. due
to electronic and electro-magnetic effects, ground and probe vibrations and the A/D
converter resolution) may reach the same order of magnitude as the velocity fluctu-
ation amplitude. This aspect is significant when wavelet decomposition is performed,
since the smaller the scale selected the smaller the expected signal-to-noise ratio. In
order to avoid these problems the hot-wire signals have been treated with a procedure
appropriate to a small fluctuating velocity. Specifically, the anemometric signal has
been acquired with a suitable offset and amplification, and it has been split into the
AC and DC components by an analogue filter. The AC signal alone has been further
amplified (gain of 30 or larger) in order to approach the full scale of the 12 bit A/D
converter used. After the acquisition, the mean and fluctuating components have been
rescaled numerically, and finally recombined. It has been checked that this procedure
ensures good reliability of data even at the smallest scales (for further details see
Camussi & Guj 1996).
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Figure 2. Log-linear plot of the PDFs of the l(r, x) fluctuations computed for r ' 5η and Reλ ' 10.
Solid line corresponds to the PDF using the whole signal. Symbols correspond to the PDF resulting
from the methodology proposed in § 5.1. The PDF amplitudes are normalized to achieve a unitary
integral.

At high Reλ (the jet case), we consider the probe resolution filtering effects as
the main possible cause for a lack of measurements accuracy. However, in this case,
measurements have been performed using a micro-sensor (probe TSI 1260) of length
lw = 500 µm, which ensures a resolution of the order of 5 Kolmogorov lengths
(Camussi et al. 1996a). Also this aspect is important when dealing with the small
scales achieved by wavelet decomposition which, therefore, has always been limited
to r > lw (by analogy, also in the grid case analyses the smallest scale considered has
been fixed to r ' 5η). We also point out that the relative turbulence level in the jet
flow is on the order of 25 %. This value represents approximately the upper limit for
correct application of the Taylor hypothesis (e.g. Monin & Yaglom 1975).

5. Results and discussion
In this section, principal results are presented and discussed. The three following

subsections refer to the three indicators that, see § 3, have been chosen for statistical
analysis. As pointed out above, the approach adopted in the present work is purely
statistical, in the sense that the shape of coherent structures and their detailed
topological features are not directly found. Nevertheless, we show that some of the
indicators chosen may retain some of the topological properties of the coherent
structures.
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Figure 3. Same as on 2 but on a log-log scale. The solid straight line represents the fit computed
for V ∗r 6 1 which yields a slope ' −1.62. Points corresponding to V ∗r � 1 are not reported for
clarity but the noise level corresponds to the vertical dotted line.

5.1. PDF of local energy fluctuations

First of all it should be pointed out that, in order for sufficient reliability of the PDF
to be achieved at high energy levels (where the statistics is poor), a large number
of samples, corresponding to the whole signal length (see Ntot in table 1), has to
be considered. Therefore the determination of the PDF of l(r, x) may require too
much CPU time and disk space. Here we propose an alternative and more efficient
procedure based on the thresholding technique previously described. In this method
we consider different subranges of energy amplitudes to match the whole PDF of
l(r, x). First a short segment of points is considered (specifically on the order of 104

samples) where the wavelet decomposition is applied so that a reliable PDF for small
fluctuations results due to the large number of events with low l(r, x). Then, the
whole signal is considered, and the PDF is computed only over those events with
l(r, x) > t1 where t1 is a suitable trigger level; the procedure is repeated for various
ti > t1 and the complete PDF may finally be obtained but using a number of samples
much smaller than that corresponding to the whole signal length. Furthermore, it has
been checked that the rare and intermittent events are better resolved than the direct
analysis of the whole signal, due to the locality of the l(r, x) definition (see (2.1)).

As a first test, we consider the grid case and analyse the l(r, x) distribution for
r ' 5η. We therefore refer to the small-scale energy fluctuations (not affected by
noise or probe resolution errors) at Reλ ' 10. In figure 2, a comparison of the PDF
obtained with the proposed procedure and that considering the whole signal is shown
on a linear-log scale. The two curves superimpose and that obtained with the new
procedure shows a quite smooth behaviour and is much more extended in terms
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Figure 4. Same as figure 3 but for Reλ ' 800. The solid straight line is obtained by the fit computed
for 0.2 6 V ∗r 6 1 and yields a slope ' −1.7. The points for V ∗r � 1 are also drawn and the flattening
observed for about V ∗r < 0.2 corresponds to the effect of the Gaussian background noise (vertical
dotted line).

of l(r, x). The x-axis of figure 2 actually represents the non-dimensional variable
V ∗r introduced in (3.2). The plot in figure 2 shows that the functional form of the
PDF is close to exponential except for V ∗r 6 1 whose functional behaviour will be
discussed in the following. This result is in agreement with previous observations of
the PDF of the velocity difference at small separation scales (see e.g. Castaing, Gagne
& Hopfinger 1990). The same PDF is shown in figure 3 on a log-log scale. A power
law in the region 0.2 6 V ∗r 6 1 is exhibited with an exponent ∼ −1.62 ± 0.07. The
vertical dotted line represents the noise level defined in detail in the following.

In figure 4, the PDF for the case of Reλ ' 800 and at a scale also on the order of 5η
is shown on a log-log scale. Three regions may be seen in this plot. The very small V ∗r
range is useful for a definition of noise effects. Indeed, it is observed that for V ∗r < 0.2
the curve becomes flat indicating the prevalence of the Gaussian background noise
over physical effects. The region 0.2 < V ∗r < 1 corresponds to points where a power
law applies. A linear fit (in the log-log representation) has been performed within
this region yielding an exponent of ∼ −1.7 ± 0.05. The experimental uncertainty of
the scaling exponent has been calculated by the standard deviation of the set of all
the possible slopes achieved among the points in the selected range where the fit is
performed (see Camussi et al. 1996b). A transition from a power to an exponential
law is finally observed for about V ∗r ' 1 and it has been shown in a log-linear
representation (not reported here for brevity) where a linear trend corresponds to the
exponential decay.

In figure 5, the two PDFs, at Reλ ' 800 and 10, are shown together, excluding
points affected by the background noise. The collapse of the points is satisfactory,
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Figure 5. Superimposition, on a log-log scale, of the PDFs of figures 3 and 4 in the region not
affected by background Gaussian noise (V ∗r > 0.2). Different symbols correspond to different Reλ.
The solid straight line is obtained by the fit computed for 0.2 6 V ∗r 6 1 considering both Reλ cases.

within the experimental uncertainty, except for very high V ∗r . For 0.2 < V ∗r < 1 a
power law behaviour is observed in both cases, and the superposition is achieved
without any further normalization.

The same analysis is then applied to resolutions corresponding to larger scales, on
the order of the integral length; the result obtained for Reλ ' 10 is shown in figure
6 and compared with the small-scale PDF at the same Reλ. It should be pointed out
that, since larger scales are considered, a coarser decomposition is performed by the
wavelet expansion, and a significantly lower number of events is detected with respect
to the cases at small r. This explains the larger dispersion of the experimental points
in figure 6, and causes such results to be only qualitatively valid. Taking this into
account, it can be observed that the collapse of the curves corresponding to small
and large scales is achieved anyway and that the fit leads to a slope close to the one
previously obtained. Analogous behaviour is observed for Reλ ' 800 (not reported
here) even if for high Reλ the separation between dissipative and integral scales is
quite significant. The collapse of the curves for large scales is also obtained for the
two Reλ (figure 7), giving, in this case even though in a more qualitative manner,
also a power law with an exponent again close to −1.65 ± 0.22. Note that in the
cases of figures 6 and 7, we focus attention on the region where a power law applies
and, therefore, the points corresponding to larger V ∗r are not drawn. Nevertheless,
when the curves of figures 6 or 7 are plotted in a semi-log scale (not reported here
for brevity) an exponential trend is again qualitatively observed for large V ∗r . Also,
the region where these curves are affected by the background noise is not reported
for clarity. With reference to figures 6 and 7 we can claim that universality seems
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that obtained for r ' 5η. Both curves are calculated for Reλ ' 10. The fit represented by the solid
straight line is obtained considering both the small- and large-scale PDFs in the range 0.2 6 V ∗r 6 1.

confirmed again for small V ∗r since, in this range, the observed shape of the PDFs is
not dependent upon the scale selected and the flow conditions.

We can summarize what has been observed so far as follows: the PDFs of the l(r, x)
as functions of V ∗r are characterized by a power law at small V ∗r and an exponential
law at larger V ∗r . The transition from a power to an exponential law is observed for
l(r, x) ' 1. Such a functional form is achieved from the integral down to dissipative
scales r where the l(r, x) distribution is computed, and seems independent of Reλ.
Furthermore, the region where a power law applies, seems to be universal, in the sense
that, without any normalization (apart from that adopted to get a unitary integral in
the PDF distribution), all the curves collapse at small V ∗r independently of r and Reλ.
As pointed out above, the region where a power law applies corresponds to l(x, r) 6 1
which can be considered the range of nonintermittent energy distribution (see Farge
1992).

An important result achieved in the PDF analysis is that not only is the PDF of
the energy distribution non-Gaussian but, when intermittency is not considered (i.e.
when l(r, x) < 1), its functional form becomes a power law. A naive correspondence
between the PDF shape (see e.g. figure 3 and figure 4) and the energy spectra within
the inertial range at high Reλ may be argued and seems confirmed by the exponent
of the power law region that incidentally is very close to −5/3. Nevertheless, as yet
this behaviour has no physical and theoretical explanation (see also Yamada, Kida
& Ohkitani 1993).

From a statistical viewpoint, the transition from a power law to an exponential law
in the energy fluctuation PDFs can be attributed to the different nature of the events
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selected. A power law behaviour can be considered proper for self-similar random
variables whereas exponential PDFs are proper for statistically independent variables
(see Abry et al. 1994). It has been found that the transition from a power to an
exponential law corresponds to the appearance of intermittency, that is for l(r, x) ' 1
(see Farge 1992). Therefore we may argue that, for a fixed scale r, there is a cascading
process from high to low energy levels similar to what happens in the Fourier domain
when going from large to small scales. Indeed, the largest energy fluctuations, as for
the case of small scales when considering the Fourier domain, are characterized by
an intermittent nature which is revealed, by analogy with the PDF of the velocity
differences at small scales (Castaing et al. 1990), by the exponential PDF.

We recall that the PDFs presented so far are calculated at fixed scales r and
by analysing the energy fluctuations in the time domain (apart from the Taylor
hypothesis). It is therefore not clear whether the observed energy amplitude variations
may be interpreted as induced on the scale r by structures of different energy, or,
taking into account that the signals are achieved using a probe in a fixed position,
whether the observed effects are due to structures passing at different distances from
the probe. At any rate, the exponential decay of the energy fluctuation PDFs in
the intermittent range seems to support the idea of a log-Poisson distribution of the
energy dissipation fluctuations (see e.g. Dubrulle 1994). However, it seems beyond
doubt that the l(r, x) PDFs have universal behaviour independent of the possible
physical mechanisms leading to their shapes. This is a non-trivial result if we account
for the large differences in the flow conditions (Reλ magnitudes and turbulence
generators) and for the basic differences in the topological nature of the structures
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related to the l(r, x) fluctuations in grid and jet turbulence (see Camussi & Guj
1997, where such large differences were demonstrated by the longitudinal velocity
component analysis).

5.2. Scaling laws and intermittency exponents

When the wavelet coefficients corresponding to strongly peaked events in the l(r, x)
distribution are smoothed out by the linear interpolation explained in § 3, the degree
of intermittency of the velocity signal decreases. In figure 8, the effects of the smooth-
ing procedure are reported. The most interesting result is the elimination of the
intermittency anomalies in the scaling exponents. In fact, for a threshold level equal
to 1, a slope of 2 is found instead of the usual anomalous exponent (of about
1.78) expected for fully turbulent conditions (see e.g. Anselmet et al. 1984; Vincent
& Meneguzzi 1991). The 〈|w̃(r, x)|p〉x (with p = 3 and q = 6) used in figure 8 rep-
resents the wavelet coefficients averaged over the whole set of time instants after the
smoothing procedure (3.5). The anomalous behaviour obtained with no smoothing
of the wavelet coefficients, yielding the expected scaling 1.78, is also shown in the fig-
ure for comparison. Indeed, for the threshold level fixed at 1, almost all of the
l(r, x) fluctuations are eliminated. The consequent scaling is therefore closer to
the Kolmogorov prediction and the relative scaling exponent ζ(6)/ζ(3) is close to
2 with a difference of less than 5 %. Therefore, the physical interpretation of these
results follows the expected idea that the smoothing procedure leads to the elimination
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of the intermittent events with high energy and, when the energy spottiness is almost
completely eliminated, the Kolmogorov prediction is consequently achieved (see e.g.
Willaime et al. 1996).

Another important consequence of these results is that structures associated with
the energy bursts observed on the l(r, x) distribution, are the only events responsible
for the observed intermittent behaviour of the velocity structure functions (that are
directly represented by the averaged wavelet coefficients). Indeed, when such events
are eliminated, intermittency anomalies are no longer observed. It should be pointed
out that the fit is achieved considering both Reλ ' 10 and Reλ ' 800 and accounting
for coefficients corresponding to r > 5η, in order to avoid probe resolution errors at
very small scales (see § 4).

From the analysis of the energy spectra, it has also been checked that this scale
is not affected by round-off errors. Moreover it can be observed that both in the
smoothed and in the raw wavelet scalings, not only the scaling exponents but also
the prefactors of the scaling laws are retained and are not dependent on the flow
conditions considered. Finally, we want to focus also on the wide scaling ranges in
figure 8. These extend over intervals of about 10 decades (the plot of figure 8 uses a
natural logarithm). Such an extension is related to the large difference between the
Reλ of the two cases considered and supports the reliability of the scaling exponent
estimation.

These results are achieved also for other moment orders (p < 6) which are not
reported here for brevity.

In order for these results to be checked further, the scaling laws have been calculated
again considering only those events with energy lower than the trigger threshold. In
other words, instead of smoothing out the contribution of the wavelet coefficients
corresponding to energy levels larger than the trigger threshold, such events are not
accounted for in the averaging procedure for the computation of the scaling relations
(see § 3). In this case, when the threshold level is high (that is, t � 1), the scaling
exponents and intermittency anomalies usually observed, are achieved. On the other
hand, when t ' 1, most of the peaked energy fluctuations are eliminated and the
Kolmogorov scaling is again achieved. These results are shown in terms of scaling
exponents in figure 9 (a). It is confirmed that intermittency is related only to the
peaks of the l(r, x) distribution since their elimination leads to the disappearance
of the intermittency anomalies. An asymptotic trend is observed for t → 0 which
corresponds to ζ(6)→ 2± 0.05, whereas for t→∞ ζ(6)→ 1.75± 0.04. The points of
figure 9 (a) are also reported in log-linear scales in figure 9 (b). The x-axis represents
the root of the trigger level that, in view of (3.1), can again be represented as V ∗r . In a
qualitative manner, it can be observed that the functional form is close to exponential
and that the exponent achieved by a linear fit of the log-linear points is similar for
the two Reλ considered.

In summary it has been shown that, within the experimental uncertainty (on the
order of 5 %), the scaling exponents are universal, and their transition towards a
Kolmogorov scaling, achieved for decreasing t, also follows a functional form which
does not vary for different flow conditions. Therefore, this approach also supports the
idea that the way energy is distributed among different scales as a consequence of the
cascading process, is universal and preserves the corresponding scaling relations of the
velocity structure functions, independently of Reλ. In summary the results of figure 8
and figure 9 (a, b) support the idea that coherent structures are responsible not only for
the l(r, x) fluctuations but also for the intermittency anomalies usually observed since,
when the largest l(r, x) fluctuations are not considered (by the smoothing procedure
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of figure 8 or by their direct elimination in figure 9 (a, b)) intermittency anomalies
also disappear and the Kolmogorov scaling is observed.

Further analysis has been performed by considering the energy associated with the
structures which are filtered or eliminated by the conditioning procedure described
above. Specifically, Er

s denotes the energy of the structures which are eliminated or
smoothed at a scale r (' 5η). On the other hand, Es denotes the energy associated
with structures which are eliminated or smoothed over all the scales r. The energy
computation is performed in the wavelet domain and the definitions of the energy
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contents may be formalized as follows:

Er
s =

∑
xt0

w(r, xt0)
2 and Es =

∑
xt0

∑
r

w(r, xt0)
2. (5.1)

The selection of the spatial positions xt0 is performed as previously described, i.e. by
fixing a level t and conditioning over the l(r, x) distribution.

The question that we would like to clarify is how important is the contribution
of the small-scale structures to the total energy of the turbulent flow. This point is
analysed by considering the ratios Er

s/E
r
tot and Es/Etot for different ti where:

Er
tot =

∑
x

w(r, x)2 and Etot =
∑
x

∑
r

w(r, x)2. (5.2)
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Indeed, when ti → 0, it is expected that both ratios tend to 1 since almost all
fluctuations are filtered whereas when ti → ∞ it is expected that the ratios tend
to zero since no fluctuations are triggered. We point out that what is important
for the present analysis is that Er

s is computed at a fixed small scale whereas Es
accounts for the contribution of all of the scales. In figure 10 (a) the ratio Es/Etot
calculated for the two test cases, grid and jet, is shown on a log-log scale. A collapse
of the curves is achieved at any ti indicating that, when the total contribution of
structures is considered, no difference is observed for different Reλ. The ratios Er

s/E
r
tot

are reported in figure 10 (b). In this case the agreement is observed only for ti 6 1,
which corresponds to the non-intermittent region previously described. It is shown
that the energy contribution of intermittent small-scale structures is significantly
affected by the flow conditions. This gives a first indication that structures in grid
and jet turbulence may have different natures since their energy is distributed over
the scales in a different manner. Specifically, on the basis of previous observations
(Camussi & Guj 1997), it might be assumed that jet structures involve a larger
number of scales since they appear as large-scale structures. The different nature of
structures in the different flow conditions will be further established in the following
section. As a final remark, we point out that for high ti (e.g. ti > 10) the energy
of the most intermittent structures is always lower than 10 %, in agreement with
previous numerical observations on the energy contributions of vortex filaments in
homogeneous isotropic turbulence (e.g. Jimenez et al. 1993).

5.3. Waiting times

The waiting times between successive events are calculated by fixing a threshold ti
and calculating the difference between consecutive time instants corresponding to
l(r, x) > ti. This procedure has been described in § 3 and more details may be found in
Abry et al. (1994). Hereafter, δt denotes the random variable representing the waiting
times and 〈δt〉 its mean value. In figure 11 the PDF of the waiting times calculated
for Reλ ' 10 and Reλ ' 800, normalized with respect to 〈δt〉, are reported. The linear
trend in the semi-log scale observed for Reλ ' 10 corresponds to an exponential
functional form which is observed for time instants larger than a time scale δtc1
also shown in the figure. According to previous results, the exponential decay is
characterized by a coefficient ' 0.5 (see e.g. Villermaux et al. 1995). Furthermore, as
will be shown later, when such a curve is plotted on a log-log scale (figure 12), the
few points corresponding to δt < δtc1 seem to follow a linear trend that corresponds
to a power law form of the PDF in this range. As pointed out above (see also Abry et
al. 1994), the transition from a power law to an exponential law of the waiting time
PDF is an indicator of the achievement of statistical independence of the detected
events. Indeed, the exponential PDF corresponds to a Poisson law which characterizes
random variables which must be statistically independent.

In general, we may define as δtc the delay time where such transition happens.
For the present analysis, δtc1 and δtc2 refer respectively to the grid and jet cases. The
presence of a transition for δt = δtc physically indicates that the characteristic time
scale of the turbulent structures which are associated to the educed events should be
of the order of, or smaller than, δtc. At Reλ ' 10, the time delay δtc1 corresponds,
in terms of space length (see grid case of table 1), to a scale of the order of 2–3η.
Therefore, we can argue that the characteristic size of the coherent structures in
grid turbulence at Reλ ' 10 is of the order of a few Kolmogorov lengths η and so
they are dissipative since their size belongs to the dissipation range of the energy
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Figure 11. Log-linear plot of the waiting times PDF normalized with respect to 〈δt〉. Different
symbols corresponds to different Reλ. δtc represents the time delay corresponding to a transition
from a power to an exponential law for Reλ ' 10 (δtc1) or Reλ ' 800 (δtc2). The solid line represents
the exponential fit of the points δt > δtc1 for Reλ ' 10.

spectra. However, as pointed out in Gledzer et al. (1996), this does not mean that the
dissipation rate ε reaches its maximum inside such structures.

The waiting time estimation and the corresponding PDF analysis in the case of
jet turbulence and Reλ ' 800 are also shown in figure 11. In this case it is evident
that no linear trend is observed and that the functional form is different from that
observed for Reλ ' 10. In figure 12, the curves of figure 11 are reported in a log-log
scale. It is evident that for Reλ ' 10 there is no linearity apart from a few points
corresponding to very low energy fluctuations (in the range δt 6 δtc1). On the other
hand, for Reλ ' 800, the trend is almost linear indicating that the functional form
can be assumed to be a power law. As pointed out above, a power law of the waiting
time PDF suggests that no statistical independence of the selected events has been
achieved. We point out again that when a power law is observed for δt < δtc, we may
presume the characteristic (spatial) dimension of the structure to be of the order of,
or less than, Vδtc. For the case of Reλ ' 800, the high turbulent dynamics spoils the
accuracy of the PDF tail. However, the largest reliable time delay reported in figure
12 corresponds, in terms of space length, to a scale on the order of ∼ 100 η, that
is clearly outside the dissipation range, and a transition to the exponential decay is
not clearly observed. Larger delays are not reported due to the poor statistics. It is
evident that, in the case of jet turbulence, it is not possible to estimate the exact value
of δtc2. However, it may surely be argued that the scale corresponding to δtc2 should
not be lower than the scale corresponding to the maximum δt where a power law is
observed, i.e. ∼ 100 η. Denoting by δtdj and δtdg the time scales corresponding to the



Local turbulent energy fluctuations 21

Rek =10

Rek = 800

Slope = –2.4

101

100

10–1

10–2

10–3

dt /©dtª

PDF©dtª

dtc1

dtc2

100 101
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of the points δt 6 δtc2 for Reλ ' 800.

dissipative lengths respectively of the jet and the grid case, it is therefore obtained
that

δtc2/δtdj ' 100� δtc1/δtdg ' 3,

demonstrating that the typical transition times δtc are not universal. We finally point
out that waiting time normalized PDFs are independent of the threshold t. In figure
13, an example of the normalized PDFs achieved for t = 1, 3 and 10 at Reλ ' 800
is given. The collapse of the curves is quite satisfactory indicating that the use of
different thresholds does not affect the physical meaning but may be useful to improve
the statistical accuracy.

In conclusion, analysis of the waiting time statistics allows us to state that in the
case of high Reλ and jet turbulence, the characteristic size (in terms of η) of the
coherent structures associated with the energy bursts is much larger than that of
the structures observed in the case of low Reλ and grid turbulence. Actually, since
the analysis is performed only on one velocity component, such a conclusion refers
to the longitudinal length scale of the structures or, if the Taylor hypothesis is not
considered, to their typical time scale. Anyway, results presented in Camussi & Guj
(1997) support the idea that the observed non-universality is due to the different types
of coherent structure which characterize grid and jet turbulence.

We finally point out that, from the experimental viewpoint, such conclusions may be
achieved either by directly visualizing the coherent structures (such as in Villermaux
et al. 1995) or by suitably conditioning the anemometric data, as in the present case
by the wavelet based procedure.

Once the PDFs of the waiting times are available, we can easily estimate the mean
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waiting time and normalize it with respect to a suitable time scale characteristic of
the flow considered. The mean waiting time is normalized with respect to the smallest
eddy turnover time available in the turbulent flow, that is estimated by the ratio η/V .
The result is plotted in figure 14 on a log-log scale. In this figure, we show also the
mean dimensionless waiting times calculated for other flow conditions at intermediate
Reλ between 10 and 800 (see Camussi & Guj 1997) to have a qualitative idea of
the dependence upon Reλ. The main result is that the mean dimensionless waiting
time strongly depends upon the Reynolds number: it increases with Reλ and seems
asymptotically to reach a saturation value of about ∼ 3. Such a trend is also observed
when the space scale instead of the time scale is considered. What is important for
the present purposes is that, again, no universality is achieved and that the mean
frequency of appearance of turbulent structures depends upon Reλ. We point out that
an increasing trend of the mean dimensionless waiting times has also been reported by
Abry et al. (1994) when pressure fluctuations were analysed. These results support the
idea that the time statistics of the coherent structures, as well as their characteristic
size, are not universal parameters but are strongly dependent on the way turbulence
is generated and on the Reynolds number of the turbulent flow.

6. Conclusions
Experimental data at Reλ = 10 and 800, have been analysed by means of a wavelet

expansion of the velocity signals. Attention has been focused on the energy fluctuations
localized in time (x) and scale (r), which are formalized by the LIM function denoted
by l(r, x). In the present analysis a pure statistical approach has been preferred for
the analysis of energy fluctuations but the results achieved sometimes show strong
differences depending on which statistical indicator is considered. Such differences are
related to the different physical meaning of the indicators themselves. The principal
results are summarized as follows:

(i) The PDFs of the energy fluctuations (LIM) follow an exponential law or a
power law depending on whether the energy distribution is intermittent or not. This
functional form seems universal, since it has been observed for scales ranging from
a few Kolmogorov lengths up to the integral size, and for different flow conditions.
Specifically, the PDFs in the non-intermittent region, corresponding to l(r, x) < 1,
are characterized by a power law with a scaling exponent of about −1.7 whereas the
exponential law is achieved for l(r, x) > 1. Incidentally, the power law region of the
energy PDFs is characterized by an exponent close to the −5/3 value expected for
the inertial range of the energy spectra at high Reλ.

(ii) The energy bursts represented by the peaks in the l(r, x) distribution seem to
be the only events responsible for the intermittent behaviour of the velocity structure
function scaling relations usually observed in homogeneous and isotropic turbulence.
As a matter of fact, when such events are eliminated in a suitable manner, the
intermittency anomalies of the scaling exponents of the moments of the wavelet
coefficients disappear, and the Kolmogorov scaling is achieved.

(iii) When we consider the way energy cascades from large to small scales, which
is the mechanism responsible for the self-similarity which leads the velocity struc-
ture functions scaling laws (Monin & Yaglom 1975), the behaviour seems to be
universal and does not depend upon Reλ or the turbulence generator, at least for
Reλ > 10.

(iv) The characteristic size of the structures responsible for intermittency is depen-
dent upon Reλ and the turbulence generators, but not upon the threshold level itself.
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The different size of the structures is shown by the shape of the waiting times PDFs.
Therefore, the preservation of the scaling laws is only a form of apparent universality.
Indeed, the coherent structures responsible for the universal scaling laws are far from
universal themselves, but are strongly dependent on the turbulent flow considered.

In conclusion the present analysis supports the idea that, in agreement with previous
analysis (Camussi & Guj 1997), the usually observed universal behaviour of the
statistics of Vr may be induced by turbulent structures of different natures and sizes
depending on the turbulent generator and on Reλ. Indeed, we think that for a certain
turbulence generator, structures are wholly responsible for the observed dynamical
behaviour which may vary only if the generator itself is changed and is not dependent
upon which energy fluctuation level is selected. Points (iii) and (iv) may be reconciled
by the idea that the presence of intermittency is due to structures of different shape
and topology depending on the turbulence generator and Reλ. On the other hand, the
way the energy is transferred from large to small scales and then dissipated seems to
be universal and preserved at surprisingly low Reλ. The present results support the
idea that the energy transfer mechanism from large to small scales is universal (at
least for locally homogeneous turbulent flows) and that small- and large-amplitude
events are strictly correlated. From this viewpoint, the present results seem to support
the validity of an infinite hierarchical structure of energy dissipation, following the
theoretical model proposed by She & Levesque (1994). Indeed, according to the recent
numerical results by Borotav & Pelz (1997), the observation that structures of different
natures (e.g. filaments and ring vortices) lead to the same scaling exponents ζ(p) is
compatible with the She & Levesque (1994) model, when the adjustable parameters
are suitably chosen.
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